
Distributed Systems
LECTURE 25

Consistency and Replication

Distributed Operating System

Course/Slides Credits

Note: all course presentations are based on
those developed by Andrew S. Tanenbaum
and Maarten van Steen. They accompany
their "Distributed Systems: Principles and
Paradigms" textbook.
http://www.prenhall.com/divisions/esm/app/
author_tanenbaum/custom/dist_sys_1e/ind
ex.html

And additions made by Paul Barry in course
CW046-4: Distributed Systems

 http://glasnost.itcarlow.ie/~barryp/net4.html Distributed Operating System

http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://www.prenhall.com/divisions/esm/app/author_tanenbaum/custom/dist_sys_1e/index.html
http://glasnost.itcarlow.ie/~barryp/net4.html
http://glasnost.itcarlow.ie/~barryp/net4.html
http://glasnost.itcarlow.ie/~barryp/net4.html

Why Replicate Data?

 Enhance reliability.

 Improve performance.

 But: if there are many replicas of the same

thing, how do we keep all of them up-to-

date? How do we keep the replicas

consistent?

 Consistency can be achieved in a number

of ways. We will study a number of

consistency models, as well as protocols

for implementing the models. Distributed Operating System

More on Replication

 Replicas allows remote sites to continue working
in the event of local failures.

 It is also possible to protect against data
corruption.

 Replicas allow data to reside close to where it is
used.

 This directly supports the distributed systems
goal of enhanced scalability.

 Even a large number of replicated “local”
systems can improve performance: think of
clusters.

 So, what’s the catch?

◦ It is not easy to keep all those replicas consistent.
Distributed Operating System

Concurrent Object Access: Problem

Organization of a distributed remote object shared by
two different clients. But, how do we protect the
object in the presence of multiple simultaneous
access?

Distributed Operating System

Concurrent Object Access: Solutions

a) A remote object capable of handling concurrent invocations on its

own.

b) A remote object for which an object adapter is required to handle

concurrent invocations (relies on middleware).
Distributed Operating System

Object Replication: Solutions

a) A distributed system for replication-aware distributed objects – the
object itself is “aware” that it is replicated. This is a very flexible
set-up, but can be costly in that the DS developer has to concern
themselves with replication/consistency.

b) A distributed system responsible for replica management – less
flexible, but removes burden from the DS developer. The most
common approach.

Distributed Operating System

Replication and Scalability

 Replication is a widely-used scalability technique: think of
Web clients and Web proxies.

 When systems scale, the first problems to surface are
those associated with performance – as the systems get
bigger
(e.g., more users), they get often slower.

 Replicating the data and moving it closer to where it is
needed helps to solve this scalability problem.

 A problem remains: how to efficiently synchronize all of
the replicas created to solve the scalability issue?

 Dilemma: adding replicas improves scalability, but incurs
the (oftentimes considerable) overhead of keeping the
replicas
up-to-date!!!

 As we shall see, the solution often results in a relaxation
Distributed Operating System

Data-Centric Consistency

Models
 A data-store can be read from or written to by any process in a DS.

 A local copy of the data-store (replica) can support “fast reads”.

 However, a write to a local replica needs to be propagated to all
remote replicas.

Various consistency models help to understand the various mechanisms used

to achieve and enable this. Distributed Operating System

What is a Consistency

Model?

 A “consistency model” is a CONTRACT
between a DS data-store and its
processes.

 If the processes agree to the rules, the
data-store will perform properly and as
advertised.

 We start with Strict Consistency, which is
defined as:
◦ Any read on a data item ‘x’ returns a value

corresponding to the result of the most recent
write on ‘x’ (regardless of where the write
occurred).

Distributed Operating System

Consistency Model Diagram Notation

 Wi(x)a – a write by process ‘i’ to item ‘x’

with a value of ‘a’. That is, ‘x’ is set to ‘a’.

 (Note: The process is often shown as ‘Pi’).

 Ri(x)b – a read by process ‘i’ from item ‘x’

producing the value ‘b’. That is, reading ‘x’

returns ‘b’.

 Time moves from left to right in all

diagrams.

Distributed Operating System

Strict Consistency Diagrams

 Behavior of two processes, operating on the same data
item:

a) A strictly consistent data-store.

b) A data-store that is not strictly consistent.

 With Strict Consistency, all writes are instantaneously visible
to all processes and absolute global time order is
maintained throughout the DS. This is the consistency
model “Holy Grail” – not at all easy in the real world, and all
but impossible within a DS.

So, other, less strict (or “weaker”) models have been

Distributed Operating System

Sequential Consistency

 A weaker consistency model, which

represents a relaxation of the rules.

 It is also much easier (possible) to

implement.

 Definition of “Sequential Consistency”:

◦ The result of any execution is the same as if the

(read and write) operations by all processes on

the data-store were executed in the same

sequential order and the operations of each

individual process appear in this sequence in

the order specified by its program. Distributed Operating System

Sequential Consistency Diagrams (1)

a) A sequentially consistent data-store – the “first” write
occurred after the “second” on all replicas.

b) A data-store that is not sequentially consistent – it
appears the writes have occurred in a non-sequential
order, and this is NOT allowed.

In other words: all processes see the same interleaving set of
operations, regardless of what that interleaving is.

Distributed Operating System

Sequential Consistency Diagrams

(2)

Three concurrently executing processes.

Process P1 Process P2 Process P3

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Distributed Operating System

Sequential Consistency Diagrams

(3)

Four valid execution sequences for the processes of
the previous slide. The vertical axis is time.

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

Signature:

 001011

 (a)

x = 1;

y = 1;

print (x, z);

print (y, z);

z = 1;

print (x, y);

Prints: 101011

Signature:

 101011

 (b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

Signature:

 110101

 (c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

Signature:

 111111

 (d)

Distributed Operating System

Problem with Sequential Consistency

 With this consistency model, adjusting the

protocol to favor reads over writes (or vice-

versa) can have a devastating impact on

performance (refer to the textbook for the

gory details).

 For this reason, other weaker consistency

models have been proposed and

developed.

 Again, a relaxation of the rules allows for

these weaker models to make sense. Distributed Operating System

Causal Consistency

 This model distinguishes between events

that are “causally related” and those that

are not.

 If event B is caused or influenced by an

earlier event A, then causal consistency

requires that every other process see

event A, then event B.

 Operations that are not causally related

are said to be concurrent.

Distributed Operating System

More on Causal Consistency

 A causally consistent data-store obeys this condition:

◦ Writes that are potentially causally related must be

seen by all processes in the same order. Concurrent

writes may be seen in a different order on different

machines (i.e., by different processes).

• This sequence is allowed with a causally-consistent store, but
not with sequentially or strictly consistent store. Note: it is
assumed that W2(x)b and W1(x)c are concurrent.

Distributed Operating System

Another Causal Consistency

Example

a) Violation of causal-consistency – P2’s write is related to P1’s write
due to the read on ‘x’ giving ‘a’ (all processes must see them in the
same order).

b) A causally-consistent data-store: the read has been removed, so
the 2 writes are now concurrent. The reads by P3 and P4 are now
OK.

Distributed Operating System

FIFO Consistency

 Defined as follows:

◦ Writes done by a single process are seen by all other

processes in the order in which they were issued, but

writes from different processes may be seen in a

different order by different processes.

 This is also called “PRAM Consistency” –

Pipelined RAM.

 The attractive characteristic of FIFO is that is it

easy to implement. There are no guarantees

about the order in which different processes see

writes – except that two or more writes from a

single process must be seen in order. Distributed Operating System

FIFO Consistency Example

(1)

 A valid sequence of FIFO consistency events.

 Note that none of the consistency models studied

so far would allow this sequence of events.
Distributed Operating System

FIFO Consistency Example

(2)

Statement execution as seen by the three processes from
the similar previous slide. The statements in bold are
the ones that generate the output shown.

x = 1;

print (y, z);

y = 1;

print(x, z);

z = 1;

print (x, y);

Prints: 00

 (a)

x = 1;

y = 1;

print (x, z);

print (y, z);

z = 1;

print (x, y);

Prints: 10

 (b)

y = 1;

print (x, z);

z = 1;

print (x, y);

x = 1;

print (y, z);

Prints: 01

 (c)

Distributed Operating System

FIFO Consistency Example

(3)

Two concurrent processes.

Process P1 Process P2

x = 1;

if (y == 0) kill (P2);

y = 1;

if (x == 0) kill (P1);

Distributed Operating System

Introducing Weak

Consistency

 Not all applications need to see all writes,

let alone seeing them in the same order.

 This leads to “Weak Consistency” (which is

primarily designed to work with distributed

critical sections).

 This model introduces the notion of a

“synchronization variable”, which is used to

update all copies of the data-store.

Distributed Operating System

Weak Consistency Properties

 The three properties of Weak Consistency:

1. Accesses to synchronization variables

associated with a data-store are sequentially

consistent.

2. No operation on a synchronization variable is

allowed to be performed until all previous writes

have been completed everywhere.

3. No read or write operation on data items are

allowed to be performed until all previous

operations to synchronization variables have

been performed.
Distributed Operating System

Weak Consistency: What It

Means

 So …

 By doing a sync., a process can force the just

written value out to all the other replicas.

 Also, by doing a sync., a process can be sure it’s

getting the most recently written value before it

reads.

 In essence, the weak consistency models

enforce consistency on a group of operations, as

opposed to individual reads and writes (as is the

case with strict, sequential, causal and FIFO

consistency).
Distributed Operating System

Weak Consistency Examples

a) A valid sequence of events for weak consistency. This is
because P2 and P3 have yet to synchronize, so there’s
no guarantees about the value in ‘x’.

b) An invalid sequence for weak consistency. P2 has
synchronized, so it cannot read ‘a’ from ‘x’ – it should be
getting ‘b’.

Distributed Operating System

Introducing Release

Consistency

 Question: how does a weakly consistent
data-store know that the sync is the result
of a read or a write?

 Answer: It doesn’t!

 It is possible to implement efficiencies if the
data-store is able to determine whether the
sync is a read or write.

 Two sync variables can be used, “acquire”
and “release”, and their use leads to the
“Release Consistency” model.

Distributed Operating System

Release Consistency

Defined as follows:

◦ When a process does an “acquire”, the

data-store will ensure that all the local

copies of the protected data are brought

up to date to be consistent with the

remote ones, if need be.

◦ When a “release” is done, protected data

that have been changed are propagated

out to the local copies of the data-store.

Distributed Operating System

Release Consistency

Example

 A valid event sequence for release consistency.

 Process P3 has not performed an acquire, so
there are no guarantees that the read of ‘x’ is
consistent. The data-store is simply not obligated
to provide the correct answer.

 P2 does perform an acquire, so its read of ‘x’ is
consistent. Distributed Operating System

Release Consistency Rules

 A distributed data-store is “Release Consistent”

if it obeys the following rules:

1. Before a read or write operation on shared data

is performed, all previous acquires done by the

process must have completed successfully.

2. Before a release is allowed to be performed, all

previous reads and writes by the process must

have completed.

3. Accesses to synchronization variables are FIFO

consistent (sequential consistency is not

required).
Distributed Operating System

Introducing Entry Consistency

 A different twist on things is “Entry Consistency”. Acquire
and release are still used, and the data-store meets the
following conditions:

1. An acquire access of a synchronization variable is not
allowed to perform with respect to a process until all
updates to the guarded shared data have been
performed with respect to that process.

2. Before an exclusive mode access to a synchronization
variable by a process is allowed to perform with respect
to that process, no other process may hold the
synchronization variable, not even in nonexclusive
mode.

3. After an exclusive mode access to a synchronization
variable has been performed, any other process's next
nonexclusive mode access to that synchronization
variable may not be performed until it has performed
with respect to that variable's owner. Distributed Operating System

Entry Consistency: What It

Means

 So, at an acquire, all remote changes to guarded

data must be brought up to date.

 Before a write to a data item, a process must

ensure that no other process is trying to write at

same time.

• Locks associate with individual data items, as opposed

to the entire data-store. Note: P2’s read on ‘y’ returns

NIL as no locks have been requested. Distributed Operating System

Summary of Consistency

Models

a) Consistency models that do not use synchronization operations.

b) Models that do use synchronization operations. (These require additional
programming constructs, and allow programmers to treat the data-store as if it is
sequentially consistent, when in fact it is not. They “should” also offer the best
performance).

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order. Accesses are

furthermore ordered according to a (nonunique) global timestamp.

Sequential All processes see all shared accesses in same order. Accesses not ordered in time.

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used. Writes from

different processes may not always be seen in that order.

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after synchronization is done.

Release Shared data are made consistent when a critical region is exited.

Entry Shared data pertaining to a critical region are made consistent when it is entered.

(b)

Distributed Operating System

Client-Centric Consistency

Models

• The previously studied consistency models concern

themselves with maintaining a consistent (globally

accessible) data-store in the presence of concurrent

read/write operations

• Another class of distributed data-store is that which is

characterized by the lack of simultaneous updates.

Here, the emphasis is more on maintaining a

consistent view of things for the individual client

process that is currently operating on the data-store.

Distributed Operating System

More Client-Centric Consistency

 How fast should updates (writes) be made
available to read-only processes?
◦ Think of most database systems: mainly read.

◦ Think of the DNS: write-write conflicts do no
occur.

◦ Think of WWW: as with DNS, except that heavy
use of client-side caching is present: even the
return of stale pages is acceptable to most
users.

 These systems all exhibit a high degree of
acceptable inconsistency … with the
replicas gradually becoming consistent
over time.

Distributed Operating System

Toward Eventual Consistency

 The only requirement is that all replicas will

eventually be the same.

 All updates must be guaranteed to

propagate to all replicas … eventually!

 This works well if every client always

updates the same replica.

 Things are a little difficult if the clients are

mobile.

Distributed Operating System

Eventual Consistency: Mobile

Problems

 The principle of a mobile user accessing different replicas of a
distributed database.

 When the system can guarantee that a single client sees accesses to
the data-store in a consistent way, we then say that “client-centric
consistency” holds.

Distributed Operating System

Monotonic Reads

 The read

operations

performed by a

single process P

at two different

local copies of

the same data

store.

a) A monotonic-

read consistent

data store

b) A data store that

does not provide

monotonic
Distributed Operating System

Monotonic Writes

 The write
operations
performed by a
single process
P at two
different local
copies of the
same data
store

a) A monotonic-
write consistent
data store.

b) A data store
that does not
provide
monotonic-
Distributed Operating System

Read Your Writes

a) A data store

that provides

read-your-

writes

consistency.

b) A data store

that does not.

Distributed Operating System

Writes Follow Reads

a) A writes-follow-
reads consistent
data store

b) A data store that
does not provide
writes-follow-
reads
consistency

Distributed Operating System

An Example: The Bayou

System

 The Bayou System implements 4

models of Client-Centric

Consistency:

1. Monotonic-Read Consistency

2. Monotonic-Write Consistency

3. Read-Your-Writes Consistency

4. Writes-Follow-Reads Consistency

Distributed Operating System

More on Bayou (1)

 Monotonic Reads: if a process reads the

value of a data item ‘x’, any successive

read operation on ‘x’ by that process will

always return that same value or a more

recent value.

 Monotonic Writes: A write operation by a

process on a data item ‘x’ is completed

before any successive write operation on

‘x’ by the same process.

Distributed Operating System

More on Bayou (2)

 Read Your Writes: The effect of a write

operation by a process on data item ‘x’ will

always be seen by a successive read

operation on ‘x’ by the same process.

 Writes Follow Reads: A write operation by

a process on a data item ‘x’ following a

previous read operation on ‘x’ by the same

process, is guaranteed to take place on the

same or a more recent value of ‘x’ that was

read.
Distributed Operating System

Distribution Protocols

 Regardless of which consistency model is

chosen, we need to decide where, when

and by whom copies of the data-store are

to be placed.

Distributed Operating System

Replica Placement Types

 There are three types of replica:

1. Permanent replicas: tend to be small in
number, organized as COWs (Clusters of
Workstations) or mirrored systems.

2. Server-initiated replicas: used to enhance
performance at the initiation of the owner of the
data-store. Typically used by web hosting
companies to geographically locate replicas
close
to where they are needed most. (Often referred
to
as “push caches”).

3. Client-initiated replicas: created as a result of
client requests – think of browser caches.
Works well assuming, of course, that the
cached data does not

Distributed Operating System

Server-Initiated Replicas

Counting access requests from different clients.
Distributed Operating System

Update Propagation

 When a client initiates an update to a distributed
data-store, what gets propagated?

 There are three possibilities:

1. Propagate notification of the update to the other
replicas – this is an “invalidation protocol” which
indicates that the replica’s data is no longer up-
to-date. Can work well when there’s many
writes.

2. Transfer the data from one replica to another –
works well when there’s many reads.

3. Propagate the update to the other replicas –
this is “active replication”, and shifts the
workload to each of the replicas upon an “initial
write”.

Distributed Operating System

Push vs. Pull Protocols

 Another design issue relates to whether or not

the updates are pushed or pulled?

1. Push-based/Server-based Approach: sent

“automatically” by server, the client does not

request the update. This approach is useful

when a high degree of consistency is needed.

Often used between permanent and server-

initiated replicas.

2. Pull-based/Client-based Approach: used by

client caches (e.g., browsers), updates are

requested by the client from the server. No

request, no update! Distributed Operating System

Push vs. Pull Protocols: Trade

Offs

 A comparison between push-based and pull-based
protocols in the case of multiple client, single server
systems.

 Hybrid schemes are possible: e.g., “leases” – a promise
from a server to push updates to a client for a period of
time. Once the lease expires, the client reverts to a pull-
based approach (until another lease is issued).

Issue Push-based Pull-based

State on server. List of client replicas and caches. None.

Messages sent.
Update (and possibly fetch update

later).
Poll and update.

Response time

at client.
Immediate (or fetch-update time).

Fetch-update

time.

Distributed Operating System

Epidemic Protocols

 This is an interesting class of protocols that can

be used to implement Eventual Consistency

(note: these protocols are used in Bayou).

 The main concern is the propagation of updates

to all the replicas in as few a number of

messages as possible.

 Of course, here we are spreading updates, not

diseases!

 With this “update propagation model”, the idea is

to “infect” as many replicas as quickly as

possible.
Distributed Operating System

Epidemic Protocols:

Terminology

 Infective replica: a server that holds an

update that can be spread to other

replicas.

 Susceptible replica: a yet to be updated

server.

 Removed replica: an updated server that

will not (or cannot) spread the update to

any other replicas.

 The trick is to get all susceptible servers to

either infective or removed states as

quickly as possible without leaving any

Distributed Operating System

The Anti-Entropy Protocol

 Entropy: “a measure of the degradation or

disorganization of the universe”.

 Server P picks Q at random and

exchanges updates, using one of three

approaches:

1. P only pushes to Q.

2. P only pulls from Q.

3. P and Q push and pull from each other.

 Sooner or later, all the servers in the

system will be infected (updated). Works

well.
Distributed Operating System

The Gossiping Protocol

 This variant is referred to as “gossiping” or
“rumour spreading”, as works as follows:
1. P has just been updated for item ‘x’.

2. It immediately pushes the update of ‘x’ to Q.

3. If Q already knows about ‘x’, P becomes
disinterested in spreading any more updates
(rumours) and is removed.

4. Otherwise P gossips to another server, as
does Q.

 This approach is good, but can be shown
not to guarantee the propagation of all
updates to all servers. Oh dear. Distributed Operating System

ASSIGNMENT

 Q: Explain all consistency protocols in

detail.

Distributed Operating System

